GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M1

Paper F

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M1 Paper F - Marking Guide

1. (a) resolve $\uparrow: R \cos 15-4 g=0$

M2
$R=\frac{4 g}{\cos 15}=40.6 \mathrm{~N}(3 \mathrm{sf})$
(b) resolve // to slope: $F \cos 15-4 g \sin 15=0$
$F=4 g \tan 15=10.5 \mathrm{~N}$
M1
M1 A1 (7)
2. (a) cons. of mom.: $2 u=0.03$ (100)

M2
$u=1.5 \mathrm{~m} \mathrm{~s}^{-1}$
A1
(b) $v^{2}=u^{2}+2 a s$ so $0=6400+2 a(0.02) \quad$ M1 A1
$a={ }^{-} 160000 \mathrm{~ms}^{-2}$ so $F=0.03\left({ }^{-} 160000\right)=4800 \mathrm{~N}\left(\right.$ opp. dir${ }^{\text {n. }}$ to bullet) M1 A1
3. (a) moments about $A($ anticlockwise +ve$)=3(2)-2(2) \quad$ M2
$=2 \mathrm{Nm}$ (anticlockwise)
A1
(b) dist. of X from D is $2 \sqrt{ } 2$ (by Pythagoras)

M1
moments about $D: X(2 \sqrt{ } 2)=5(2)+3(2)$
M1
$X=\frac{8}{\sqrt{2}}=4 \sqrt{ } 2 \quad$ M1 A1
4.

(a) resolve \downarrow for man: $90 g-R=90(0.5)$ so $R=837 \mathrm{~N}$
(b) resolve \downarrow for lift: $R+70 g-T=70$ (0.5) M2 A1
$837+686-T=35$ so $T=1488 \mathrm{~N}$
A1
(c) impulse $=\Delta$ mom. $=160(0-2)=320 \mathrm{Ns}$

M1 A1
(d) $F t=320$, so $F=\frac{320}{2}=160 \mathrm{~N}$

M1 A1
5. (a) initially, A is at $6 \mathbf{i}$ and travels $(-4 T \mathbf{i}+T \mathbf{j}) \mathrm{km}$ in T hours

M2
T hours after midday, A is at $(6-4 T) \mathbf{i}+T \mathbf{j} \mathrm{~km}$
initially B is at $3 \mathbf{j}$ and travels $(4 T \mathbf{i}-3 T \mathbf{j}) \mathrm{km}$ in T hours
M2
T hours after midday, B is at $4 T \mathbf{i}+(3-3 T) \mathbf{j} \mathrm{km}$
(b) $\operatorname{pos}^{\text {n. }} B$ rel. to A is $[4 T-(6-4 T)] \mathbf{i}+[(3-3 T)-T] \mathbf{j}$

M1
i.e. $[(8 T-6) \mathbf{i}+(3-4 T) \mathbf{j}] \mathrm{km}$

A1
(c) they will collide if coeffs. of \mathbf{i} and \mathbf{j} in part (b) are both zero M1
$8 T-6=0$ and $3-4 T=0$ are both satisfied when $T=\frac{3}{4}$
A1
i.e. collision at 12:45 p.m.

A1
6. (a) $u=0, s=2200-240=1960, a=9.8$ use $v^{2}=u^{2}+2 a s$
$v^{2}=0+2(9.8)(1960)$ so $v=196 \mathrm{~ms}^{-1}$
M2
(b) $s=u t+\frac{1}{2} a t^{2}$

M1
$1960=0+4.9 t^{2} \Rightarrow t=20$ seconds
M1 A1
(c) $140-20=120$ seconds to travel 240 m M1 speed $=2 \mathrm{~ms}^{-1}$
(d) e.g. no air resistance; velocity on opening parachute will not immediately reduce
e.g. if air resistance included, value in (a) would be much lower and consequently value in (b) much higher
7.

(a) $\sin \alpha=\frac{3}{5}$ (3,4,5 Pythag. triple) so $\cos \alpha=\frac{4}{5}$
resolve perp. to plane: $R-m g \cos \alpha=0$ so $R=\frac{4}{5} m g$

$$
F=\mu R=\frac{1}{5} m g
$$

M1 A1
M1 A1
Resolve up the plane: ${ }^{-} F-m g \sin \alpha=m a$ M1
$-\frac{1}{5} m g-\frac{3}{5} m g=m a$ so $a=-\frac{4}{5} g$
A1
i.e. $\quad a=\frac{4}{5} g$ and is directed down the slope
(b) $u=20, v=0, a=-\frac{4}{5} g$ use $v^{2}=u^{2}+2 a s$

M1
$0=400-\frac{8}{5} g s \Rightarrow s=25.51 \mathrm{~m}$, i.e. 4.49 m (nearest cm) from top
(c) friction now acts up slope but R (and hence F) as in part (a)

B1
$m g \sin \alpha-F=m a \Rightarrow \frac{3}{5} m g-\frac{1}{5} m g=m a$ M2
$a=\frac{2}{5} g$ A1
$u=0, s=25.51, a=\frac{2}{5} g, s=u t+\frac{1}{2} a t^{2}$ M1
$25.51=\frac{1}{5} g t^{2}$ i.e. $t=3.61$ seconds
M1 A1

Performance Record - M1 Paper F

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	statics,	$\begin{array}{\|l\|l} \hline \text { cons. of } \\ \text { mom.. } \\ F=m a \end{array}$	moments	connected bodies	$\begin{array}{\|l\|l} \hline \mathbf{i}, \mathbf{j}, \\ \text { rel. } \\ \text { posn. } \end{array}$	$\begin{aligned} & \text { accel.- } \\ & \text { time } \\ & \text { graph } \end{aligned}$	uniform accel., frictio	
Marks	7	7	7	11	11	13	19	75
Student								

